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This work describes a new method for the rapid characterization of volatile compounds of cork wine
stoppers by a dynamic headspace method coupled to mass spectrometry (DHS-MS). This technique
does not require any pretreatment of the sample. The global volatile signature of the cork is evaluated
without real chromatographic separation of its constituents. For data analysis, the mass fragments
of each spectrum (50 < m/z <180 amu) were considered as potential descriptors of the composition
of the cork sample headspace. Chemometrics methods (principal component analysis and partial
least-squares regression) were applied to extract useful information by selecting the most significant
mass fragments (m/z) that allowed a good classification of the cork samples studied. In the present
work, geographical origin of cork samples could be successfully characterized and predicted.
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INTRODUCTION

Food product characterization based on an analysis of their
aroma compounds is a widely used technique. Generally,
analytical solutions imply the use of gas chromatography-mass
spectrometry (GC-MS). Among food or agricultural products,
wine corks have been extensively studied because of the many
difficulties encountered by wine makers in avoiding cork taint,
the most frequent wine off-flavor. Using various solvent
extraction procedures, about 100 volatile compounds have been
identified in cork by GC or GC-MS(1-4). Nevertheless, GC-
MS is very time-consuming, not only because of the pretreat-
ment step (extractions) but also because of long data interpre-
tations. Recent research has shown that the rapid analysis of
the global volatile fraction of foods by mass spectrometry
without chromatographic separation produces signals (signa-
tures) containing significant information. Thus, direct coupling
of mass spectrometry with extraction methods such as dynamic
headspace (DHS-MS), static headspace (SHS-MS), or solid-
phase microextraction (SPME-MS) affords a “fingerprint” of
analyzed products (5-13), with or without preconcentration of
their volatile fraction. Owing to their rapidity, these nonsepa-
rative methods can be used for the classification and prediction
of the volatile signatures of the products.

In this study, a new analytical approach is proposed for the
rapid characterization of low- and medium-molecular-weight
compounds from cork wine stoppers using a dynamic headspace
method coupled online with a mass spectrometer (DHS-MS).
The volatile signature of the sample is evaluated without
complete separation of its constituents, and the potential of the
instrument to discriminate volatile signatures of corks, with

regard to their geographical origin, is tested. In practice, the
discriminating power of the DHS-MS was evaluated by using
three different geographical cork origins. A tentative identifica-
tion of the corks’ volatile signature constituents was conducted
by a series of separative analyses on the same extraction device
with the dynamic headspace system, coupled to gas chroma-
tography/mass spectrometry (DHS-GC/MS). The spectra of the
molecules separated by DHS-GC/MS and mass profiles obtained
by the headspace analysis of the samples with the DHS-MS
method were both compared with a library of mass spectra and
with cork constituents identification results published in other
studies.

EXPERIMENTAL SECTION

Origin and Preparation of Products Analyzed.The cork samples
were supplied by a Champagne producer (SIBEL, France). The samples
were of three geographical origins: Spain (NAV and CAS), Portugal
(LIM and HEF), and Morocco (TEM). They were stored in the dark at
room temperature in polyethylene bags, and just before use, they were
ground to powdered form and kept in aluminum foil.

Sample Preparation.Each sample of powdered cork was placed
in a stainless steel tube. The tube was filled before the analyses and
was put in a dynamic desorber CHROMPACK TCT system (Thermal
Desorption Cold Trap injector, CHROMPACK France, Les Ulis,
France). The quantity of powdered cork used was 350 and 150 mg for
the DHS-GC/MS and DHS-MS methods, respectively.

Isolation and Desorption of Volatiles. The volatile components
were isolated and concentrated using the dynamic headspace desorber
Chrompack, with adsorption on a poly(dimethylsiloxane) capillary trap
(Supelco SPB-1, 0.53 mm i.d., film thickness 5.0µm) which was
maintained at room temperature to prevent water condensation, which
causes analytical artifacts (14). Each sample was heated to 150°C under
helium flow (N55 99.995% pure) at a constant pressure of 1 bar above
atmospheric pressure. The tube trap adsorbed the volatile substances
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flushed from the sample by the helium. During the isolation step, the
helium flow at the exit of the trap was released into the atmosphere
through the flow controller. Extraction lasted 12 min for DHS-MS
analysis and, as larger amounts are required for GC, 30 min in the
case of DHS-GC/MS. At the end of the extraction time, helium was
driven to the analytical apparatus while the trap was concomitantly
heated at 230°C for 6 min in order to desorb the volatile components.

DHS-GC/MS Measurements.For the DHS-GC/MS analysis, the
volatiles were separated by gas chromatography under a flow rate of
0.8 mL/min. An HP 5890 Series II gas chromatograph (Agilent
Technologies, Avondale, PA) and an HP 5970 mass-selective detector
(MSD) (Agilent Technologies, Palo Alto, CA), directly interfaced to
the chromatograph, were used for this study. The MSD parameters were
set to the values determined by the automatic tuning procedure, and
the mass range was 37-300 atomic mass units (amu). Mass spectra
were searched against thenbs49kmass spectral library (Office of
Standard and Reference Data, NIST). The separation was performed
with a DB-5MS (95% methyl and 5% phenyl) bonded phase column
(J & W Scientific, 25 m× 0.2 mm i.d., film thickness 0.33µm).
Operating conditions were as follows: initial temperature 50°C for 3
min, then 50-200°C at 4°C/min. Three replicates were done for each
type of sample.

DHS-MS Measurements.The trap was under a constant pressure
of 1 bar above atmospheric pressure with a helium flow rate of 100
mL/min. After the extraction and the desorption steps, the molecules
passed through a transfer line (SGE DB-1, 1 m× 0.25 mm i.d.), held
at 200°C in the chromatograph oven, which ensured sufficient flow
resistance for the turbomolecular pump to maintain the vacuum in the
spectrometer. The volatile components were detected by mass spec-
trometry with electron impact ionization at 70 eV. Them/z range
considered in these conditions was 50-180 amu. This range is smaller
than in the case of DHS-GC/MS because, on one hand, fragments less
than 50 amu have various origins and low specificities (15) and, on
the other hand, preliminary experiments showed no significant frag-
ments above 180 amu. The signal (total ion current) took the form of
an asymmetrical peak∼10 min wide (Figure 1). Background noise
was evaluated by averaging the mass spectra recorded after the peak,
at between 12 and 14 min. Finally, the mean abundance values of all
the mass fragments recorded between 0 and 10 min were used in the
calculations, after removal of the overage background spectrum. About
10 replicates were done for each of the five types of samples, generating
a matrix of 51 individuals and 131 variablesX (51 × 131).

Data Analysis.PCA was used as the first step for data exploration,
as it allows a visualization in two- or three-dimensional space of the
variability of a data set, without the constraint of any initial hypothesis
concerning relationships among samples and variables. PCA was
performed using MATLAB software (MATLAB for Windows, version
4.0, The Mathworks Inc., Natick, Ma).

Partial Least Squares-2 (PLS-2).PLS regression has become the
most commonly used method for multivariate regression because the

predictive ability is often better than that for principal component
regression (PCR) and because fewer principal components are required,
simplifying interpretation (16-18). PLS-2 is a PLS regression method
used for multipleY variables. In the present case, matrices used to
build the PLS-2 discriminant analysis model are the matrix of the raw
dataX (51 × 131) and the matrix of variables to predictY (51 × 3).
Y is the matrix “origins” coded 1 and 2:

PLS-2 was performed using Win ISI software (Infrasoft International,
LLC, version 1.50.)

When dealing with predictive regression methods, it is necessary to
check the consistency of the model by determining the optimal number
of PCs to use for the prediction of new unknown samples. The goodness
of the calibration model is measured by the standard error of cross-
validation (SECV). It is calculated by using the square of the differences
between expected and predicted values, divided by the number of
individual values,

whereY is the expected value,Yh is the predictive value, andn is the
number of individuals. On the other hand, the external validation
principle is totally independent of the determination of numbers of PCs
to use in the model. The model predictive ability is evaluated by the
calculation of the standard error of prediction (SEP), which is similar
to SECV but divides byn′, the number of individual values of the
validation matrix. The validation matrix is recorded for an independent
sample set.

RESULTS AND DISCUSSION

DHS-GC/MS Results.From the 12 chromatographic analy-
ses, tentative identifications were done for 17 peaks on the basis
of their retention times and mass spectra (Table 1). The
molecules proposed cover a wide range of chemical families,
most of them already published in other studies: organic acids
[4-butoxybutanoic acid, acetic acid (1, 2)]; furans [2-furancar-
boxaldehyde, 2H-pyran-2-one (1,2)]; aldehydes [decanal,
(2E,4E)-2,4-nonadienal, (2E,4E)-2,4-decadienal (2)]; phenols
[2-methoxy-4-(2-propenyl)phenol, 2-(1,1-dimethylethyl)phenol,
4-hydroxy-3-methoxybenzaldehyde (vanillin) (1-3)]; and hy-
drocarbons [tetradecane, hexadecane, alcane].

Figure 1. Total ion current of Portuguese (LIM) cork sample obtained by
DHS-MS.

Table 1. Volatile Compounds Proposed as Tentative Identification in
the Dynamic Headspace of Corks Samples

peak
no.

retention
time (min) molecules

1 2.247 acetic acid
2 6.714 2-furancarboxaldehyde

2H-pyran-2-one
3 11.569 5-methyl-2-furancarboxaldehyde
4 21.531 decanal
5 21.914 (2E,4E)-2,4-nonadienal
6 25.494 2-(1,1-dimethylethyl)phenol
7 25.800 (2E,4E)-2,4-decadienal
8 27.046 2-methoxy-4-(2-propenyl)phenol
9 27.306 4-butoxybutanoic acid
10 28.606 4-hydroxy-3-methoxybenzaldehyde
11 28.848 tetradecane
12 30.454 6,10-dimethyl-5,9-undecadien-2-one
13 31.816 terpene
14 32.088 terpene
15 35.165 1,2-benzenedicarboxylic acid, diethyl ester
16 35.790 hexadecane
17 39.223 alcane

1 ) does not belong to the group

2 ) belongs to the group

SECV) x (Y - Yh)2

n
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The identity of vanillin was confirmed by comparing its
retention time and mass spectrum with those of a commercial
reference (Sigma, Saint-Quentin Fallavier, France).

DHS-MS Results.PCA Results.Principal component analysis
was applied to the desorption profiles of Moroccan, Spanish,
and Portuguese cork samples, without any pretreatment of the
data.Figure 2 shows the PCA projection of the samples on the
first, second, and fifth principal components, which are the most
relevant to visualize the groups of origin. The three PCs
collectively account for 99.41% of the total variability of the
samples. The first PC seems to be the most important for
distinguishing the groups and accounts for 98.67% of variation.
The PCA shows that the samples are organized into three well-
separated groups. PC2 separates the Portuguese group (G3) from
the other two groups, while PC5 separates the Spanish group
from the two others. No subdivision due to the time of analysis
is observed. The loadings associated with each PC are presented
in Figure 3, which shows whichm/zvariable most contributes
to the separation between the groups. Variables which contribute
to PC1 are them/z ) 50, 57, 60, 61, 81, 109, 123, 151, and
152 amu; to PC2,m/z ) 57, 60, 61, 134, and 178 amu; and
finally to PC5,m/z) 57, 60, 68, 73, 97, 112, 126, 134, 160,
and 178 amu. The most important of these ions were used to
search through the mass spectral library. Results are listed in
Table 2. PC3 and PC4 were rejected for classification purposes,
as the corresponding score plot demonstrated strong overlap of
the three groups, indicating low information content concerning
geographical origin of the cork in PC3 and PC4.

PLS Results.PLS-2 was used to build a discrimination model
and to predict group membership. The SECV minimum was
observed with six principal components. The calibration gave
a regression coefficient of 0.8106 and an SECV of 0.2066, to
be compared to theY range, namely from 1 to 2. The
independent validation set of this model was carried out on a
new data file (31× 131) collected at later dates: 3 months and
8 months after the first acquisitions of the calibration set. This
step allows the validation of the statistical model and the
checking of the reproducibility of the instrument.Figure 4
illustrates the model-predicted group membership values of
both the calibration dataX (51 × 131) and the validation data
Xv (31× 131). This model gave an SEP of 0.2659. The correct
origin is well predicted for all samples, though for 6 corks
among 31, the value predicted for one of the wrong origins is
high enough to be within the confidence interval at the levelp
) 0.05.

Data Filtering Using PLS Results. PLS is a supervised
method where a model is built to predict a controlled variable.
PLS can highlight which variables have a significant role in
the model. In the present case, these selected variables may then
be used to perform another PCA on the data. The selection of
m/zvariables is thus based on the contribution to the PLS model.
Variables with a contribution less than 0.4 in the first principal

Figure 2. Three-dimensional PCA plot of data matrix X (51 × 131). (])
CAS and (3) NAV (Spanish samples), (/) HEF and (O) LIM (Portuguese
samples), and (0) TEM (Moroccan samples).

Figure 3. PCA loadings plot of the data matrix X (51 × 131). Variables
that strongly contribute to PC1, PC2, and PC5 are highlighted.

Table 2. Fragments (m/z) Which Have the Highest Contribution in the
Discrimination between the Samples and the Possible Chemical Origin
for These Fragments

m/z (amu) possible molecules refs

50 benzaldehyde 1, 2
57 2-ethylhexanol 1, 2
60 acetic acid 1−3, DHS-GC/MS
61 2,3,4,6-tetrachlorophenol 1−3
97 4-hydroxy-3-methoxybenzoic acid 1−3
109 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one

(camphor)
1, 2

134 1-ethyl-2,3-dimethylbenezene 1−3
81, 151, 152 4-hydroxy-3-methoxybenzaldehyde 1−3, DHS-GC/MS
97, 134, 160 2,4,6-trichlorophenol 1−3
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component of the PLS were rejected, resulting in a reduced data
set,XR. The size ofXR (51× 32) is less than 25% of the original
data matrixX (51× 131). PCA was then applied to the reduced
matrix XR (51 × 32) in order to visualize the data compression
effect.Figure 5 represents the projection of theXR individuals
onto PC1 (98.26%), PC2 (0.64%), and PC4 (0.29%). The groups
are better separated compared to the previous PCA.

The dynamic headspace-mass spectrometry method de-
scribed in this paper offers promise for obtaining fast results
for the characterization of volatile signatures. DHS-MS in
conjunction with multivariate analysis represents a simple and
effective solution to determine cork origin on the basis of the
rapid analysis of its volatile fraction. However, chemical
information about the origin may be masked by the presence
of the other compounds. Data filtering may be required to extract
the most discriminant variables when unsupervised data analysis
methods such as PCA are used. This study demonstrates the

ability of DHS-MS to characterize the geographical origin of
cork, and further developments are expected in the field of cork
taint.
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Figure 4. PLS plot results representing projection of the samples onto
the three axes of the predicted PLS values. X is the Spanish group’s
predicted value (G1), Y is the Moroccan group’s predicted value (G2),
and Z is the Portuguese group’s predicted value (G3). (]) Spanish
calibration samples, (0) Moroccan calibration samples, and (O) Portuguese
calibration samples. ([) Spanish validation samples, (9) Moroccan
validation samples, and (b) Portuguese validation samples.

Figure 5. Three-dimensional PCA plot of data matrix XR (51 × 32). (])
CAS and (3) NAV (Spanish samples), (/) HEF and (O) LIM (Portuguese
samples), and (0) TEM (Moroccan samples).
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